Alhamdulillah, masih diberi kesempatan untuk bernafas
Pada entri kali ini saya ingin nebyambung entri sebelum ini bagaimana untuk menggunakan ultrasonic sensor pada Arduino anda. Berbeza sedikit pada projek kali ini, output daripada ultrasonic sensor kita akan dikeluarkan pada screen PC anda dalam bentuk bacaan. Pada entri sebslum ini, output ultrasonic sensor diterjemahkan dalam bentuk gelombang warna pada screen PC anda. Mari kita mulakan.
Bahan yang diperlukan
1. Arduino board
2. HC-Sr04 ultrasonic sensor
3. Breadboard
4. Jumper atau wire
Software yang diperlukan
1. Arduino IDE
Cara untuk keluarkan reading pada PC
buka Arduino IDE > Tools > serial monitor
Wiring
* VCC connection of the sensor attached to +5V
* GND connection of the sensor attached to ground * TRIG connection of the sensor attached to digital pin 2 * ECHO connection of the sensor attached to digital pin 4
* GND connection of the sensor attached to ground * TRIG connection of the sensor attached to digital pin 2 * ECHO connection of the sensor attached to digital pin 4
Lakaran daripada fritzing |
nilai bacaan sensor di screen PC |
Coding Arduino
/* HC-SR04 Sensor https://www.dealextreme.com/p/hc-sr04-ultrasonic-sensor-distance-measuring-module-133696 This sketch reads a HC-SR04 ultrasonic rangefinder and returns the distance to the closest object in range. To do this, it sends a pulse to the sensor to initiate a reading, then listens for a pulse to return. The length of the returning pulse is proportional to the distance of the object from the sensor. The circuit: * VCC connection of the sensor attached to +5V * GND connection of the sensor attached to ground * TRIG connection of the sensor attached to digital pin 2 * ECHO connection of the sensor attached to digital pin 4 Original code for Ping))) example was created by David A. Mellis Adapted for HC-SR04 by Tautvidas Sipavicius This example code is in the public domain. */ const int trigPin = 2; const int echoPin = 4; void setup() { // initialize serial communication: Serial.begin(9600); } void loop() { // establish variables for duration of the ping, // and the distance result in inches and centimeters: long duration, inches, cm; // The sensor is triggered by a HIGH pulse of 10 or more microseconds. // Give a short LOW pulse beforehand to ensure a clean HIGH pulse: pinMode(trigPin, OUTPUT); digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); // Read the signal from the sensor: a HIGH pulse whose // duration is the time (in microseconds) from the sending // of the ping to the reception of its echo off of an object. pinMode(echoPin, INPUT); duration = pulseIn(echoPin, HIGH); // convert the time into a distance inches = microsecondsToInches(duration); cm = microsecondsToCentimeters(duration); Serial.print(inches); Serial.print("in, "); Serial.print(cm); Serial.print("cm"); Serial.println(); delay(100); } long microsecondsToInches(long microseconds) { // According to Parallax's datasheet for the PING))), there are // 73.746 microseconds per inch (i.e. sound travels at 1130 feet per // second). This gives the distance travelled by the ping, outbound // and return, so we divide by 2 to get the distance of the obstacle. // See: http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.3.pdf return microseconds / 74 / 2; } long microsecondsToCentimeters(long microseconds) { // The speed of sound is 340 m/s or 29 microseconds per centimeter. // The ping travels out and back, so to find the distance of the // object we take half of the distance travelled. return microseconds / 29 / 2; }
0 comments:
Post a Comment